Multiple classifier for concatenate-designed neural network
نویسندگان
چکیده
This article introduces a multiple classifier method to improve the performance of concatenate-designed neural networks, such as ResNet and DenseNet, with purpose alleviate pressure on final classifier. We give design classifiers, which collects features produced between network sets, present constituent layers activation function for calculate classification score each use L2 normalization obtain instead Softmax normalization. also determine conditions that can enhance convergence. As result, proposed classifiers are able accuracy in experimental cases significantly, show not only has better than original models, but produces faster Moreover, our general be applied all related models.
منابع مشابه
Recognition of Multiple PQ Issues using Modified EMD and Neural Network Classifier
This paper presents a new framework based on modified EMD method for detection of single and multiple PQ issues. In modified EMD, DWT precedes traditional EMD process. This scheme makes EMD better by eliminating the mode mixing problem. This is a two step algorithm; in the first step, input PQ signal is decomposed in low and high frequency components using DWT. In the second stage, the low freq...
متن کاملClassifier Based Text Mining for Neural Network
Text Mining is around applying knowledge discovery techniques to unstructured text is termed knowledge discovery in text (KDT), or Text data mining or Text Mining. In Neural Network that address classification problems, training set, testing set, learning rate are considered as key tasks. That is collection of input/output patterns that are used to train the network and used to assess the netwo...
متن کاملA Neural Network Classifier for Occluded Images
This paper proposes a neural network classifier which can automatically detect the occluded regions in the given image and replace that regions with the estimated values. An auto-associative memory is used to detect outliers such as pixels in the occluded regions. Certainties of each pixels are estimated by comparing the input pixels with the outputs of the auto-associative memory. The input va...
متن کاملFuzzy Hypersphere Neural Network Classifier
In this paper fuzzy hypersphere neural network (FHSNN) is proposed with its learning algorithm, which is used for rotation invariant handwaritten character recognition. The FHSNN utilizes fuzzy sets as pattern classes in which each fuzzy set is an union of fuzzy set hyperspheres. The fuzzy set hypersphere is an ndimensional hypersphere defined by a center point and radius with its membership fu...
متن کاملConcatenate and Boost for Multiple Measurement Vector Problems
Multiple measurement vector (MMV) problem addresses the recovery of a set of sparse signal vectors that share common non-zero support, and has emerged an important topics in compressed sensing. Even though the fundamental performance limit of recoverable sparsity level has been formally derived, conventional algorithms still exhibit significant performance gaps from the theoretical bound. The m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Neural Computing and Applications
سال: 2021
ISSN: ['0941-0643', '1433-3058']
DOI: https://doi.org/10.1007/s00521-021-06462-0